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XVI. Two general propositions in the method of differences. By
Thomas Knight, Esq. Communicated by Taylor Combe,
Esq. Sec. R. S.

Read February 2%, 1817.

1. Thovonso many ingenious writers have demonstrated,
and, in various respects, extended the celebrated formulas
of LA GRANGE, for A% (x), ="¢ (r) no one appears to have
entertained the idea, that these, and the more general cases,
in which the quantities under the functional sign have their
differences variable, might be included in one simple form.

Mr. Prony* is, I believe, the only mathematician who has
given a form of any regularity to A® ¢(x), when the diffe-
rence of z is variable; but he does not seem to have been
aware of the capability of the method he was employing ;
and instead of embracing, as he might have done, all cases
_in one simple expression, he has proposed a formula which
has neither any particular elegance in itself, nor any appa-
rent relation to that which, in the simpler case, had been
given by LA GRANGE.

I suppose the truth of the differential equations

o~ n (1) n(n—1) (n—2)
Are=0,— T, _,+ Pr—z™" 123 (Pn—-3+’ (1)

1.2
n(n+1) n(n+1) (n42)

con
2 q):_"‘"@...'n.*"—;@-(n-m) + ¢’-—-(n+z)+ 1.2.3 ¢~(n+3)+""(2):

where ¢ is any variable function whatever.

* Lacrorx ¢ Calc, des Diff”’ p, 235.
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Prop. 1.

2. To find the n't difference of a function of any number of vari
able quantities, A™ ¢ (X, y, z, &c.), when the differences of
‘X, Y, 2, &c. are any how variable.

We will begin with a function of two variables ;

Let X =By B =Ty & =B e & B ;1th=se
3 3 n n | values -
are Si~

——.y-——w ’y ——-y—w ,y --y='w ......J’ —y-——-wn, ‘ multa-
J peous.

e "”SD(“J)) (d ¢(w:y)) ( ¢(a:.y)) (@(r,y)
Let dxn dn_]d n...zd + ...... ..+ -—;;;:—)

be represented by 2(—3&%} the sign = expressing here

the sum of all the different values that will arise to the func-
tion within the brackets, by giving successwely to m the
~valueso,1,2,8,..... n

Lastly, let the symbol B represent what may be called

elective multxphcatlon thus = <M> A (4 w)" will

n—-md

"o (2, )

denote that each value of ( T is' to be multiplied by
dy

the corresponding term of the expanded binomial (w-fw)" ;
iz (Lo ) n (o) L I TR
viz. (—;;;——} Aby u", (m by nu w,( n__: y ) by

{aand § —2
3'5-;—;-) #""*uw*, and so on. Then

ot ytw )=o)+ = ‘(ﬂﬁ? ) (2,4 ).
< o) \= D)
e e R e

S“mdy
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el@tu . y+w )=0(z,y) + 2(—@—(5—1-)—) A (4, +w )+ -

1=t gy
(St b4 2 (A ) B+,

Pt y+w )=p(z, ) +2(—-—-’-’?—_(_—x;n——?—~>IX(u +w )+

(e oyt 2 (S @ w

de3" Mg, ™
&c. &c.

These values substituted in the equation Arp==p —= .o
| n A

+ e, e, taie
Arp(a, y)=o(z, y) { 1— T+ "("713(3"“2)+}
| +z(ﬂ-l~‘3?—f_f,;,"1-—’—,-,,){(u+w)-——(u w )
O, ) b, 4]
+ = (et ) {(u toy—te_ 4w )
+ 5, -, e, )+
+ ;-ss‘(d——-—i;i:,;;)m fo, +uy—tto,_+u_y
+O e, P, e, P
&c. , &c.

3. Now, by the general formula for the »** difference of a
variable quantity, (1),

Ar(z =4 y)r= (w+y+u+w)"‘—--—(w+y+u Aw )

1
n(n-—-l) (%,_*_y +u + wn-—z) —_ whence, makmg X andj
vamsh ‘
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An(0+ol)m=(un+wn)m____’l_’_(un—! )m+n(n—l)(u +w___ 2)”’,.._;
the successive values of o being “ uz, u3, ,,,,,,, u

those of o being WoW, W, w
, 2’ 3

_'r;t__ + n(n—1) . n(ne1) (n—2) +

observing therefore that 1 — — s

=A"0--0")’, and putting 2( dof_(m;y;> for ¢ (x,y) our equa-

tion takes this form

Arg(w, y)=3 (dd o(x:2) )A”(o-l-o) +2< < W’ 2 )A”(o—[-o’) +

o—md
13( L ”,,)A"(o+o') +733 (j;’if,,: 2 )A”(o+o’>3+ :
What has been done with respect to a function of two vari-
ables, the analyst will immediately see how to extend to a
function containing any number ; we may therefore without
entering into any farther particulars, give the following

GENERAL RULE.

Let the successive values

ofo beu ,u,u,....... u
1T 20 3 n
ofo’bew ,w,w,.......w
1T 2 3 n
ofo"bev,v,v,.......v*
1 2 3 n
oL &e L. e e Jthen will
4 27
An¢(x,y, 2, &C.) = A" 0+0 o +&c. (3)

provided that, after the expansion, we multiply every where a term
b
of the form A x u®y_p % W ey x vy, x &c. by

* Supposing &, —zzv, , &C. &C
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da+b+c+&c.¢(x,y, z, &c.))
< dz®. dyb. d2° . &c. '
4 The expression of La GRANGE is a particular case of eq.
(3), to perceive which we must observe that
Ane.r +y +z+&c.= x+y+z+&c.+un+wn+vn+&c.

-l: ©

. ex+y+z+&c.+u”_l+'w +v, .+ &C.+

N1 n

nin—1) ex+y+z+&c'+un—z+wn—z+"’n—-z+&c'+ &c. whence
1.2
Aneo+o;+o"+&c.= eun+wn+vn+&c.__1lz_ eu"__l -f-'wn__l +"n—l + &C.

+”-—-—(n_ NS L LT L ;
1.2

which, if z, y, 2, &c. have constant differences, or if »*, un—1,

u, . &c. W, W, _ ., ©, ,, &c. Vs Uy ys ¥, &C., &c. are nu,

(n—1) u, (n = 2)u, &, nw, (n — 1w, (n—2)w, &c., nv,
(n=—1)v, (n—2)v, &c. &c. becomes
{ eu+w+v+&c.__;1 }n

The equation (3) may be presented under another form
for if we compare the values of

& . / 1 .
Ang® I TEREC and Ane® T HOHECL Lo oo that

"eo+ol+o”+&c"“ Anex+y+z+&c.

A T Ty T R consequently
4
n x+y+z+&c.
”n, —— At
A"e(x,y, 2, &)= S TyTRTES (4)

where we must observe, with respect to the differential co-
efficients, the same rule as was given with eq. (8).
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Prop. II.

5- To find 3" (X, y, 2, &c.) supposing that the differences of
X, Y, z, &c. are any how variable.

We shall here make use of the same notation as we did
in Prop. I, only let the preceding values
of z be x—u_y, x~—u_,, z—u_,, &c.
of y be y—w_y1, y~Wesz, y—wW—3, &C.
of 2 be z—v—;, 2—=V2, T=—Vmj, &C.
&ec. &ec.
It will be sufficient also to consider the case of two variable
quantities, as was done in Prop. L.
First, we have, in general,

ole—tor, y= ) =p (3, )= 3 (0T Rt

d*s(z, - . a3 (2,
+_:.!_. (d ¢(xy))(u r w_y) __53.,2(;1_“;’_1)_) {

2—m 23— Mgym

&= (#.r+w—r)’4 which expression being combined with (),
putting for the sake of symmetry ¢ (z,y) =2 ( Lol )

dz °”’"a

gives

e(z,y) =% (;d%%nﬂ%)- § (mntwn)’ + 5=t

)+ +’)(u_(,,+,)+w_(,,+,))0+ &e. ]
( d'¢(z ») )- {(u—n+w—n)‘+-f —tntr)

+'w—(n+l)) +n( )(u--(n+z)+w-—(n-l-z)) + &e. }

MDCCCXVII, 11
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TR LT S N .

dz z—md
n(n+’)(u-—(n+z) +w—(n+z))g+ &ec. }

-+ &c.
But by equat. (2) 2z 4= y) "= (L 4y = thp—w_ n)

x+ -—u._(n+x)-—w—(n+!))"'+n(n+ )(w+y-u_.(,,+2)-w__(,,+z))‘”+
Y
whence

2”(0+0')’”"‘+{ (“-—n+w—n) + ""(“—-(n+l) + We(n 1) )"

T ey urn)) o }

The upper or lower sign havmg place .accordmgly as m is
even or odd. So that our equation may be expressed thus,

£70(2,9) = (do?_(;;y) )EE“(0+0')°+ z:( _2'g(2,9) )EE”( o4’ +

d dx' T gy™
Ly o) . (% 9) .
: 2(————-———“,1‘,’;’ )- = (oo + ;. (d = )z (o404
and the analyst will, without any trouble, see the truth of
the following rule for a function of any number of variables.
Let the preceding values

Of 0 be“""u,._’,‘ — —y —3y . . ‘. o e "'-'u..-.n., &C.
of o/ be—w_,, —w_,, —Wegys o v e —W_y, &C.
of 0o be—vy, —Vz, —v—3y . . . .. — Uy, &C.
&e. &e. '
then will
s (x y’ z’ &ec. )____zﬁ 040" 40" - &¢c. (5)

provided that, after expansion, we multiply a term of the form

b
A X Zl__(n_’_,.)x'w —"("-I-T) X 7)_("+r) b4 &C, b}l
; ( da+b+c+&c.

¢(~T: Vs 2y &c-))
dz®x dyb xd2® x &,
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We have by form (2),
Ene 24y 4-&c. — ex+y+z+&c.—u_n—-w_n-v__n-&C. +

% ) ex+y+z+&c.—-u__(n+l)—-w;_‘(n+l)f-v_‘(n+l)—&c.+ ‘

n—“—"(:: D A L AN Y 2) "V (n2) T L

&c. . .« « « « « <« . . . sothat

/ w4 ¢ N
zn 0+0'+o +&c_e—u__n—-w n——v__ _&c.+
n
T .

e'_“__(n.{-l) -.(n.}.;) (n+‘) '-'-&C.+. (6)

e I CE W (R0 iy o2

1.2
By comparing these expressions, it appears that
o OO b ze” A2 LSS ‘
sne H&C o e and consequently, that
e T ) S .

n ’ };u.,x+y+z+&°- :ded
o, 9, 2, &ee.) =TT provided, fe

It is scarcely necessary for me to observe, that the second mem-

ber of the equation marked (6) becomea;{e""""""""'8‘“:‘__l }""'

in the case of constant differences of @, y, 2,-&c.; for u—p,
U—(n+1)> &c. become in this case, nu, (n+4-1) %, &c., and the
w, s and v, s undergo a similar change.

The results of the preceding proposmons may be brought
into a very small compass, viz.

A= representing S®, the nt® difference or the n® integral of a
function of any number of variable quantities, and varying in any
possible manner, will be expressed by the equalion A*p(z, y, %, &c.)

An z+y+24&c.

x+y+z+&c.
&e. &C. &e.

; provided that after expansion, we | multiply

Iig
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6. ScHOLIUM.

We may find, in many cases, very clegant and regular
expressions for A*¢(x ), by supposing ¢(x-u) to be expanded
differently from the form given by TayvrLor’s theorem: as,
for instance,

Ifo(x+u)=y(X)+X . () +X's ()X x"(#) +, (7)
where X, X', X", &c. represent any functions whatever of x, and
&, ¥, %> %' 8c. any functions of the quantities they stand before,
then Az, or u, being constant,

Aro(x)=X.A% x(0)+X".A% % (0)F-X". A% 5" (0)4&c. : for
o(@+ )= (2) + X .x (n) + X' o (mu) +
-——;. P(wn—1 . u)=— = - Y(2)— —1— X.x(n—1. u)— T'Xl-

%'(n—1 . u)—

+ o ni—z 1) =" () + 2D X e )+

2020 X! ! (n—3). )4
&ec. &ec.
and because A®. p=¢ — o+ -'-'Q:—:-z-) ¢ _— this being

N1

added give
ar ¢(2)=X. An x(0)4X". A% x'(0)4+X". A" x"(0)+ (8)
If form (7) soon terminates, the expressions for the diffe-
rences are very simple, as in
Ez. 1. Sin. (# 4-u) = sin. # cos. u 4 cos. x, sin. », which
being compared with (7) gives X = sin. &, X' = cos. x, X",
&c.=0; x(0) == cos. 0, %’ (0) = sin. 0, %" (0), &c. =0} whence
A*, sin. @ == sin, &. A*. cos. o+cos &. A™, sin. o.

Ez. 2. Tang. (x 4 u)=tang. x + sec.’® { tang. u-}-tang. .
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tang.* u 4 tang.’ z, tang.u 4 }, see DELAMBRE, Preface to

Borpa, p. 48, whence, by our expression,

A™. tang. w-_—.sec.’x{ A™tang. o-}tang. x . A™ tang.’o+-tang.x.

A" tang.o +}

Ex. 8. L. sin. (v 4 u) = L. sin. @ + L. cos. u 4

M { Cot. . tang. u — —;—:cot.’w. tang.’ u-j- -;—-cot.sw tang 2u }

DELaMBRE, Preface to BOBDA, p- 453 comparing with (7)

and (8) we find A* . L. sin. x==A".L.cos.o -

M { Cot.xA".tang.o—-%cot"‘.xA”.tang.’o-l—-;-cot.%.A".tang.ao-— }

In like manner, because

L.cos.(v+u)=L.cos. z4L. cos. u—-M{tang. Z. tang. u-j-

I o 1’
- tang.’ z. tang.*u - 7 tang.? 2. tang.Su +}
A*. L .cos. z=A"L.cos.o — M {tang. Zz A™. tang. o -}
1 L] 1 «
— tang.* x A" tang.’o - n tang.’z A® tang.?o -} }
Then, because L . tang. = L . sin. — L. cos., A* L . tang. =
An L. sin. — A” . L. cos., therefore
A L. tang. & = M{ (Cot. x 4-tang. &) A™ tang. 0 —
= (cot* & — tang.’ x) A tang."o 4

; (cot3 z < tang.’ 2 ) A" tang.? 0 —-}

If these forms were to be used for interpolation, we should
have to calculate, before the commencement of a Table,
A L. cos. o, A% L.cos. o, &c.; A.tang. o, A*.tang. o, &c.;
A .tang.’o, A% tang.to, &c., &c. These latter quantities are
to be multiplied by M, and will then serve for calculating the
whole Table.

" If three differences are sufficient, we have, making u==1'*

* It is the decimal division of the circle which is supposed here.
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A .L.cos. 0o ==—,0%8579, A*. L. cos. 0 = —, 0"107158,
A%. L. cos. o=, 0";
A, tang. 0=, 0°1570796339, A® . tang. o=, 0"78, A% tang.

0=, 0"78;

A . tang.® o=, 07246740, A’. tang.* 0 =, 04934380, A’. tang.*
‘ 0=0, 0"

A . tang3 o =, 0”39, A.” tang.? 0 =, 0232, A3. tang.® o =,
0'°2g2.

Suppose, for a particular example, we want the first three
differences of L. sin. 50°, we have

A L. sin. 5o’=—, 0'585794+M{ 0*1570796389—,0"128870
+, o"13}

A*L. sin, 50°=—, 0 1o7158+M{ ,0"78— 072467404 o"77}

A% L. sin. 50°= M{ , o"78+,o”77} or

A L. sin. 50° =, 0000682081040, A*. L . sin. 50° = —,

00000002 14249,
A% L. sin. 50°=, 0000000000068.



